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Barreto-Torres G, Hernandez JS, Jang S, Rodríguez-Muñoz AR,
Torres-Ramos CA, Basnakian AG, Javadov S. The beneficial effects of
AMP kinase activation against oxidative stress are associated with prevention
of PPAR�-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart
Circ Physiol 308: H749–H758, 2015. First published January 23, 2015;
doi:10.1152/ajpheart.00414.2014.—AMP kinase (AMPK) plays an im-
portant role in the regulation of energy metabolism in cardiac cells.
Furthermore, activation of AMPK protects the heart from myocardial
infarction and heart failure. The present study examines whether or
not AMPK affects the peroxisome proliferator-activated receptor-�
(PPAR�)/mitochondria pathway in response to acute oxidative stress
in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts
were exposed to H2O2-induced acute oxidative stress in the presence
or absence of metformin, compound C (AMPK inhibitor), GW6471
(PPAR� inhibitor), or A-769662 (AMPK activator). Results showed
that AMPK activation by metformin reverted oxidative stress-induced
inactivation of AMPK and prevented oxidative stress-induced cell
death. In addition, metformin attenuated reactive oxygen species
generation and depolarization of the inner mitochondrial membrane.
The antioxidative effects of metformin were associated with the
prevention of mitochondrial DNA damage in cardiomyocytes. Coim-
munoprecipitation studies revealed that metformin abolished oxida-
tive stress-induced physical interactions between PPAR� and cyclo-
philin D (CypD), and the abolishment of these interactions was
associated with inhibition of permeability transition pore formation.
The beneficial effects of metformin were not due to acetylation or
phosphorylation of PPAR� in response to oxidative stress. In conclu-
sion, this study demonstrates that the protective effects of metformin-
induced AMPK activation against oxidative stress converge on mito-
chondria and are mediated, at least in part, through the dissociation of
PPAR�-CypD interactions, independent of phosphorylation and acet-
ylation of PPAR� and CypD.
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THE ROLE OF MITOCHONDRIA in energy production is well estab-
lished. Mitochondria are also involved in a range of other
processes, such as reactive oxygen species (ROS) production,
ion signaling, redox control, lipid metabolism, cell growth, and
cell death through apoptosis, necrosis, and autophagy (16).
Structural and functional abnormalities are implicated in the
pathogenesis of cardiac diseases, including myocardial isch-
emia (infarction) and heart failure (37). Activation of numer-
ous survival protein kinases, including the AMP-activated
protein kinase (AMPK) (43), protein kinase C (28), phospha-

tidylinositol-4,5-bisphosphate 3-kinase (11), glycogen syn-
thase kinase 3 (24), and cGMP-dependent protein kinase (27),
has been demonstrated to protect cardiomyocytes against oxi-
dative stress through a direct or indirect interaction with
mitochondria. Specifically, AMPK activation is associated
with a reduction in cardiac hypertrophy (49) and infarct size,
preservation of cardiac energy sources, and reduction in both
necrosis and apoptosis (26). AMPK has been widely accepted
as the main cellular energy sensor that both initiates ATP-
generating processes and blocks ATP-consuming processes.
Furthermore, AMPK plays a central role in the regulation of
mitochondrial metabolism and controls the redox state of the
cell, though the underlying mechanisms of its action on mito-
chondria remain unclear. Previous studies demonstrated that
pharmacological activation of AMPK stimulates fatty acid
oxidation (FAO) through increased expression of nuclear re-
ceptor peroxisome proliferator-activated receptor-� (PPAR�)
target genes in skeletal muscle cells (47). We, along with other
groups, demonstrated that PPAR� was implicated in cardio-
protective signaling in the heart (4, 7, 48). PPAR� increases
the expression of enzymes, transporters, and proteins that are
involved in FAO, mitochondrial biogenesis, and the transport
of fatty acids into the mitochondria. However, the role of the
AMPK/PPAR� pathway in the prevention of mitochondrial
dysfunction in acute oxidative stress remains unknown.

The beneficial effects of AMPK activation are mediated
through mitochondria, particularly the inhibition of mitochon-
drial permeability transition pore (PTP) opening (4, 19, 39).
Although PTP opening is a well-known phenomenon that
occurs in response to oxidative stress, the molecular identity of
the pore complex is not yet clear. It has been well established
that cyclophilin D (CypD) plays an important role in regulating
of PTP opening (5, 23). In this study, we sought to determine
whether or not the AMPK/PPAR� pathway was involved in
protecting H9c2 cells from oxidative stress-induced cell death
via the inhibition of PTP opening. Our results showed that
AMPK activation with metformin attenuated H2O2-induced
cell death and depolarization of the inner mitochondrial mem-
brane (IMM). The protective effects of metformin were asso-
ciated with a reduction of both ROS generation and mitochon-
drial DNA (mtDNA) damage in the cultured cardiomyocytes.
Coimmunoprecipitation studies showed that metformin abro-
gated oxidative stress-induced physical interactions between
PPAR� and CypD, and the abolishment of these interactions
was associated with inhibition of PTP formation. The benefi-
cial effects of metformin were not due to oxidative stress-
induced acetylation or phosphorylation of PPAR� and CypD.
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MATERIALS AND METHODS

Cell culture. H9c2 rat embryonic cardioblasts (American Type
Culture Collection, Manassas, VA) were grown in Dulbecco’s mod-
ified Eagle’s/Ham’s F-12 medium (DMEM, Invitrogen, Carlsbad,
CA) containing 5.5 mM glucose and supplemented with 10% fetal
bovine serum, 10 �g/ml transferrin, 10 �g/ml insulin, 10 ng/ml
selenium, 1% penicillin and streptomycin, 2 mg/ml BSA, 2.44 mg/ml
NaHCO3, 5 �g/ml linoleic acid, 3 mM pyruvic acid, 0.1 mM MEM
non-essential amino acids, 10% MEM vitamin, 0.1 mM L-ascorbic
acid, and 30 mM HEPES (pH 7.1) and maintained in 95% room
air-5% CO2 at 37°C. After starvation for 24 h, cells were pretreated
with H2O2 in the presence or absence of metformin. The cells were
serum starved for 24 h in DMEM with 5.5 mM glucose and 10 mg/ml
BSA, 2.44 mg/ml NaHCO3, 80 �g/ml CaCl2, 0.25 mg/ml fetuin, 1%
penicillin and streptomycin, 5 �g/ml insulin, 5 �g/ml transferrin, 10
ng/ml selenium, 0.1 mM L-ascorbic acid, 0.1 mM MEM nonessential
amino acids, 10% MEM vitamin, and 44 �M BSA-palmitate (pH 7.1
before treatments).

Cell viability. Cell viability was determined by the trypan blue
exclusion assay. Cells were incubated with trypan blue, and dead
cells (trypan blue positive) and live cells (trypan blue negative)
were counted using the TC20 automated cell counter (Bio-Rad,
Hercules, CA).

Mitochondrial membrane potential. To monitor mitochondrial
membrane potential (��m), H9c2 cells (4 � 105 cells/well) plated in
a 24-well culture plate were incubated with the membrane potential-
sensitive dye 5,5=,6,6=-tetraethyl-benzimidazolylcarbocyanine iodide
(JC-1, 10 �g/ml, Molecular Probes) for 30 min at 37°C. The intensity
of fluorescence was measured using a Spectramax M3 microplate
reader at 527 and 590 nm for emission and 488 nm for excitation. For
confocal microscopy, the cells plated on glass-bottom dishes were
loaded with JC-1 at the same concentration. The images were obtained
using a Zeiss LSM510 META microscope (Carl Zeiss, Oberkochen,
Germany).

Complex I electron transport chain activity. The activity of the
electron transport chain (ETC) complex I in cell lysates was deter-
mined by measuring the decrease in the concentration of NADH at
30°C (20). Cells were resuspended in hypotonic phosphate buffer
containing 5 mM MgCl2 and 0.55 mg/ml saponin and, then, freeze
thawed three times to rupture the IMM completely. The assay was
performed in phosphate buffer containing 1 mM KCN, 5 mM MgCl2,
2.5 mg/ml BSA, 2 �M antimycin, 100 �M decylubiquinone, and 100
�M NADH (pH 7.4). Specific activities were determined by calcu-
lating the slope of the reaction in the linear range and normalizing per
milligram of protein.

Total ROS levels. Cells were cultured in 3-cm dishes and admin-
istered corresponding treatments. Cells were then detached and cen-
trifuged, and the pellet was resuspended in 200 �M 2=,7=-dichloro-
fluorescein diacetate (Life Technologies, Grand Island, NY) for 30
min. After incubation with the dye, the cells were washed, and the
fluorescence was quantified using a Wallac 1420 VICTOR F micro-
plate reader (PerkinElmer, San Diego, CA) with a 485-nm excitation
filter and a 535-nm emission filter.

Mitochondrial PTP. To quantify mitochondrial PTP opening, cells
were incubated with 5 �M calcein-acetoxymethyl ester (Molecular
Probes, Eugene, OR) in the presence of 5 mM cobalt chloride, which
quenched cytosolic and nuclear calcein. Cells were visualized with an
Olympus IX73 inverted fluorescence microscope (Center Valley, PA),
and fluorescence images were captured using an Olympus DP73
high-performance Peltier cooled digital color camera (Center Valley,
PA). Olympus CellSens Dimension Imaging software (Center Valley,
PA) was used to analyze calcein fluorescence in cells.

SDS-PAGE and Western blot analysis. Membranes were immuno-
blotted with acetyl-lysine, AMPK, phospho (P)-AMPK�1Thr172 (Cell
Signaling, Boston, MA), CypD, andenine nucleotide translocator,
PPAR�, P-PPAR�Ser21 (Santa Cruz Biotechnology, Santa Cruz, CA),
PPAR� coactivator 1� (PGC-1�), nuclear respiratory factor (NRF) 1
and 2, mitochondrial transcription factor A (Abcam, Cambridge,
MA), or actin (Sigma-Aldrich, St. Louis, MO). The chemilumines-
cence signals were visualized using Thermo Scientific Pierce ECL
Western blotting detection reagents (Thermo Scientific, Rockford, IL)
at the VersaDoc 3000 Gel Imaging System (Bio-Rad).

Coimmunoprecipitation. Protein samples were incubated with anti-
PPAR� or anti-CypD antibodies overnight at 4°C, and the immuno-
precipitates were harvested by protein A/G-agarose beads (Santa Cruz
Biotechnology, Santa Cruz, CA). The immunoprecipitated complexes
were washed and then subjected to SDS-PAGE, followed by immu-
noblotting using antibodies for CypD, andenine nucleotide transloca-
tor, voltage-dependent anion channel, and PPAR� (Santa Cruz Bio-
technology). For phosphorylated CypD and PGC-1�, samples were
incubated with anti-phospho-threonine-proline antibodies (Abcam),
as explained above. The complexes were then immunoblotted using
antibodies for CypD (Santa Cruz Biotechnology) and PGC-1� (Ab-
cam). Likewise, for acetylated CypD and PGC-1�, samples were
incubated with acetyl-lysine (Cell Signaling), and the complexes were
then immunoblotted using antibodies for CypD and PGC-1�.

Quantitative polymerase chain reaction analysis of mtDNA abun-
dance and damage. The procedures for DNA isolation, quantification,
mtDNA damage analysis, and mtDNA abundance determinations
have been previously described (45). The quantitative polymerase

A

Compound C (10 μM)

B

H2O2 (75 μM)
Met (mM) 5- -

- ++
0

+
10

*60

100

120

40

20

80

A-769662 (μM) -- --
-- -

105
++ +

-
- 25-
++ -

--
++ +

-

25 5050
+- +-

+
++ ++ ++++

Li
ve

 c
el

ls
, %

 o
f c

on
tro

l

H2O2 (100 μM)
Met (mM) 5- -

- ++
0

+
10

Compound C (10 μM)

60

100

120

40

20

80

A-769662 (μM) -- --
-- -

--
++

5025
---

*

+

++++

+

Li
ve

 c
el

ls
, %

 o
f c

on
tro

l

-
-
-
+

+

Fig. 1. The effects of metformin (Met) and A-769662 on cell death induced by 75 (A) and 100 (B) H2O2 in H9c2 cells. Cell death was assessed by the trypan
blue exclusion test and shown as a percentage of live cells compared with the control group. The control group included cells that were treated with corresponding
agonist/inhibitor in the absence of H2O2. *P � 0.01, H2O2 vs. control; 	P � 0.05 and 		P � 0.01, H2O2 	 Met or H2O2 	 A-769662 vs. H2O2; n 
 3–5
per each group.
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chain reaction (PCR) assay is based on the ability of certain DNA
lesions to block the movements of the PCR polymerase during PCR,
thus allowing an estimation of the number of DNA lesions in a target
sequence. DNA damage is inversely proportional to the relative
amplification of the target sequence. To detect mtDNA damage in
H9c2 cardioblasts, a 10-kb mtDNA fragment from the rat mitochon-
drial genome was amplified. This amplification was normalized to the
amplification of a small fragment [113 base pair (bp)] of mtDNA to
correct for possible changes in mtDNA abundance. Given the prob-
ability of the PCR encountering a lesion in such a small DNA target
is very low, a small fragment can be amplified to provide a measure
of relative mtDNA abundance. To ensure exponential amplification of
the target sequences, preliminary experiments were performed to
optimize the buffer (PreMixes, Epicentre), initial template concentra-
tion, and the number of PCR cycles (data not shown). Expected PCR
products were verified by a polyacrylamide gel electrophoresis for the
small amplicon and agarose gel electrophoresis for the large amplicon.

To determine mtDNA abundance in rat cardiomyocytes, the 113-bp
mtDNA fragment was amplified with the following primer sequences:
5=-ACGGGATTTCATGGCCTCCA-3= (forward) and 5=-TGCG-
GCTTCAAATCCGAAATG-3= (reverse). The PCR reactions (con-
taining 7.5 ng of DNA in premix 3) were performed with an initial
denaturation at 94°C for 45 s, followed by 22 cycles of denaturation
at 94°C for 15 s, annealing/extension at 67°C for 45 s and 45 s at
72°C, and a final postextension for 10 min at 72°C. The 10-kb
fragment was amplified with the following primer sequences: 5=-
GCCGGAAACCTAGCCCATGC-3= (forward) and 5=-ACGAGTGG-
GCGGGTTGTTGA-3= (reverse). The PCR reactions (containing 7.5
ng of DNA in premix 6) were performed with an initial denaturation
at 94°C for 45 s, 23 cycles of denaturation at 94°C for 15 s,
annealing/extension at 68°C for 12 min, and a final extension at 72°C
for 10 min.

Relative amplification was determined by quantifying the amount
of DNA present in the PCR tube after the PCR reaction and then was
expressed relatively to a reference DNA, which consisted of a pooled
DNA (7.5 ng) from the cardiomyocytes grown under standard condi-
tions. In all the experiments, a sample containing 3.75 ng of DNA was
also included to ensure that reactions were in the exponential phase.

Statistical analysis. Data are presented as means � SE. Differences
among groups were compared by two-tailed Student’s t-tests or one-
or two-way factorial ANOVA. Differences were considered to be
statistically significant when P � 0.05.

RESULTS

Metformin attenuates oxidative stress-induced cell death
associated with AMPK activation. To determine whether or not
metformin protects H9c2 cardiomyocytes from oxidative
stress-induced cell death, we examined the effects of 75 and
100 �M H2O2 on cell survival. It should be noted that H2O2 at
these concentrations were used in further experiments. As
shown in Fig. 1, cell survival was significantly reduced in
cells treated with 75 and 100 �M H2O2. However, pretreat-
ment with metformin or A-769662 significantly attenuated
cell death in response to H2O2. The beneficial effects were
observed at low and high concentrations of the AMPK
agonists. Inhibition of AMPK by compound C prevented
protective effects of metformin and A-769662 on cell sur-
vival, indicating that the effects are mediated through
AMPK activation (Fig. 1, A and B).

In the following set of experiments, we examined the effect
of metformin on AMPK activation in response to oxidative
stress in cardiomyocytes. Phosphorylation of AMPK at Thr172

has been shown to be both necessary and sufficient to promote
AMPK activation (41). Previous studies using pharmacological

(39, 50) and genetic (29) inhibition of AMPK revealed that the
beneficial effects of metformin are primarily associated with
AMPK activation. As shown in Fig. 2A, H2O2 alone at con-
centrations of 50–300 �M reduced AMPK phosphorylation,
with a maximum effect (40% of control, P � 0.01) at 300 �M
H2O2. Treatment of control cells with metformin alone exerted
the maximum effect on AMPK phosphorylation at 10 mM
(Fig. 2B). Pretreatment with metformin at a concentration of 5
or 10 mM induced a 2.0- or 2.5-fold increase of AMPK
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Fig. 2. The effects of H2O2 on AMP kinase (AMPK) activation in the presence
or absence of Met. A: concentration-dependent effects of H2O2 on phospho
(P)-AMPK�1

Thr172 levels. B: concentration-dependent effects of Met on
P-AMPK�1

Thr172 levels. C: effects of oxidative stress on P-AMPKThr172 in
cardiomyocytes pretreated with 2, 5, and 10 mM Met. A–C, top: representative
Western blot images of the phosphorylated and total levels of AMPK�. A–C,
bottom: quantitative data of AMPK� phosphorylation were normalized to total
(t)-AMPK and expressed as percent change relative to the control group (C).
*P � 0.05 and **P � 0.01 vs. C; 	P � 0.05 and 		P � 0.01 vs. H2O2.;
n 
 6–8 per group.
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phosphorylation, respectively, compared with that in control,
in the presence of H2O2 (Fig. 2C).

Thus our data suggest that metformin may reduce oxidative
stress-induced cell death at least in part via an increase in
AMPK activation. This conclusion is supported by the fact that
the beneficial effects of metformin and A-769662 on cell
survival were eliminated in the presence of compound C.

Metformin attenuates mitochondrial dysfunction and ROS
production in H2O2-treated cardiomyocytes. Mitochondrial
membrane potential is a marker of the structural and functional
integrity of mitochondria. It is linked to mitochondrial metab-
olism including ATP synthesis, maintenance of ion homeosta-
sis, and transport of solutes and proteins to and from the
mitochondria. To determine whether the cardioprotective ef-
fects of metformin against oxidative stress are mediated
through the protection of mitochondrial function, we measured
the ��m in cardiomyocytes. Results showed that H2O2 in-
duced depolarization of the IMM by 76% (P � 0.01). Pretreat-
ment with metformin at both 5 and 10 mM attenuated these
effects and significantly improved the ��m (Fig. 3, A and B).
The effects of metformin were abolished by compound C
(AMPK inhibitor) and GW6471 (PPAR� inhibitor), indicating
that both AMPK and PPAR� were involved in the action of
metformin on mitochondria (Fig. 3C). Furthermore, GW6471

eliminated beneficial effects of A-769662 on the complex I
ETC in H2O2-treated cells (Fig. 3D). Altogether, these data
demonstrate that PPAR� is involved in the AMPK-mitochon-
dria pathway under H2O2-induced acute oxidative stress.

Loss of ��m stimulates mitochondrial ROS production,
which, in turn, enhances total ROS levels through the ROS-
induced ROS release mode (51). Therefore, we measured total
ROS levels in H9c2 cells subjected to H2O2 in the presence and
absence of metformin. This experiment showed a twofold
increase (P � 0.01) in intracellular ROS levels after H2O2

exposure for 1 h at increasing concentrations (100–300 �M)
(Fig. 3E). As expected, pretreatment of cells with metformin at
5 and 10 mM blocked the increase of H2O2-induced ROS
production (Fig. 3F).

Since it is well established that high ROS levels can cause
PTP opening and lead to cell death, we sought to determine
whether PTP opens in response to H2O2 treatment and whether
metformin mediates its beneficial effects through inhibition of
PTP opening. Exposure of H9c2 cardiomyocytes to 5 mM
metformin alone induced a 12% (P � 0.05) decrease in PTP
formation. In contrast, 100 �M H2O2 for 1 h resulted in a 34%
(P � 0.001) increase in PTP opening, as measured with a
decreased mitochondrial calcein fluorescence (Fig. 4, A and B).
Even though the levels of calcein fluorescence in mitochondria
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varied from cell to cell, the overall average value of calcein
staining was reduced in cells subjected to oxidative stress.
Pretreatment of the cells with both metformin and A-769662
preserved the mitochondrial calcein fluorescence.

These data demonstrate that AMPK activation decreases
ROS production and enhances resistance to oxidative stress by
preventing ��m loss and inhibiting mitochondrial PTP open-
ing in H9c2 cells.

AMPK activation in H2O2-exposed cells prevents CypD-
PPAR� interaction. CypD is a main regulator of PTP forma-
tion (22), and the cytoplasmic proteins including heat shock
protein 90, Bcl-2, and p53 have been shown to interact with
CypD and modulate the PTP (5). We tested whether oxidative
stress can potentiate PPAR� interaction with CypD. Oxidative
stress significantly increased the interaction between PPAR
and CypD, which was inhibited by pretreatment with met-
formin (Fig. 5, A and B).

Physical interaction between PPAR� and CypD might be
due to post-translational modification(s) of one or both pro-

teins. Therefore, we next determined if H2O2 induces acetyla-
tion or phosphorylation of PPAR� and CypD in H9c2 cells.
The cells were subjected to H2O2, and the levels of acetylated
or phosphorylated PPAR� and CypD were monitored at 10, 20,
30, and 60 min after the treatment. As shown in Fig. 6, A and
B, H2O2 had no effect on acetylation of PPAR�; however, it
increased PPAR� phosphorylation at 10 and 20 min. The same
trends were observed for acetylation and phosphorylation of
PGC-1�, a coactivator of PPARs (Fig. 6, A and B). Interest-
ingly, pretreatment with metformin did not affect H2O2-in-
duced PPAR� phosphorylation (Fig. 6C). It should be noted
that acute oxidative stress had no effect on expression of the
proteins involved in the mitochondrial transcriptional network,
PGC-1�, NRF1, NRF2, and mitochondrial transcription factor
A (Fig. 6D). Analysis of P-CypD and acetyl-CypD protein
levels revealed no changes in CypD acetylation and phosphor-
ylation within 30 min of H2O2 exposure. Acetylation and
phosphorylation of CypD were 32 (P � 0.05) and 34% (P �
0.05) less than control at 60 min of oxidative stress, respec-
tively (Fig. 7, A and B). Overall, these results suggest that
metformin abrogated oxidative stress-induced physical inter-
actions between PPAR� and CypD likely via a mechanism that
is independent of acetylation and phosphorylation of PPAR�.

Metformin reduces oxidative stress-induced mtDNA
damage. In addition to opening the PTP, ROS also causes
mtDNA damage. To determine the effect of H2O2 on mtDNA
abundance and damage in cultured cardiomyocytes, the cells
were exposed to varying concentrations of H2O2 (0–200 �M)
for 1 h, followed by DNA isolation and quantitative PCR
analysis. Analysis of a small mtDNA amplicon (113 bp), which
provides information about relative mtDNA abundance,
showed a trend toward increased mtDNA abundance after
H2O2 treatment. Maximum mtDNA abundance was reached at
75 �M H2O2, which was 1.88 fold higher (P � 0.01) than
nontreated cells (Fig. 8A). The effect of H2O2 was even more
robust inducing mtDNA lesions. The amplification of the large
(10 kb) mtDNA amplicon, an indicator of mtDNA lesions, was
40% (P � 0.05), 79% (P � 0.01), and 90% (P � 0.01) less
after exposure with 75, 100, and 200 �M of H2O2, respec-
tively, compared with untreated control cells (Fig. 8B).

To determine the effect of metformin on H2O2-induced
mtDNA lesions, we exposed cells with 75 �M H2O2 in the
presence or absence of metformin. The results showed that
H2O2 induced a 43% decrease in amplification (P � 0.05 vs.
control), whereas no effect was seen in cells treated with
metformin alone. However, metformin prevented the mtDNA
damage caused by H2O2 (Fig. 8C). Overall, these results
indicate that metformin can prevent H2O2-induced mtDNA
lesions in cultured cardiomyocytes.

DISCUSSION

This study demonstrates that AMPK activation, in response
to H2O2-induced oxidative stress in H9c2 cardiomyocytes, 1)
ameliorated cell death and preserved the activity of AMPK, 2)
attenuated depolarization of the IMM and prevented ROS
generation, 3) reduced mtDNA damage, 4) abrogated oxidative
stress-induced physical interaction between PPAR� and CypD
that was associated with the inhibition of PTP formation, and
5) beneficial effects of AMPK activation were not associated
with acetylation or phosphorylation of PPAR� and CypD.
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AMPK activation during oxidative stress induced by cardiac
ischemia-reperfusion or heart failure may have both beneficial
and harmful effects on the heart. Stimulation of glucose me-
tabolism and FAO by AMPK can promote cell death due to
accumulation of lipid intermediates and metabolic acidosis. On
the other hand, AMPK can restore ATP to maintain cell
metabolism (13). Notably, activation of AMPK depends on
severity and durability of oxidative stress. In our studies, H9c2
cells exposed to 50 –300 �M H2O2 for 60 min revealed
gradual dephosphorylation of AMPK (Fig. 2). In contrast,
H2O2 at a high concentration (1 mM) increased AMPK
phosphorylation in H9c2 cells (18) and adult rat ventricular
cardiomyocytes (14).

Beneficial effects of AMPK activation by various pharma-
cological agents are mostly mediated through mitochondrial
mechanisms, in particular, the inhibition of PTP opening (4, 6,
10). Several mechanisms can mediate prosurvival effects of
AMPK activation on mitochondria. One of the downstream
targets of AMPK is GSK-3�, which upon phosphorylation
translocates to mitochondria and inhibits PTP opening (9).
Recent studies demonstrated that AMPK activation by
A-769662 was associated with phosphorylation of GSK-3�
and inhibition of PTP during cardiac ischemia-reperfusion in
rats (35). In addition, AMPK-induced phosphorylation of
GSK-3� reduced ROS production in response to oxidative
stress (8). We showed that the beneficial effects of metformin
on mitochondria are mediated through PPAR�, since the
PPAR� inhibitor GW6471 prevented the cardioprotective ef-
fects of metformin against ischemia-reperfusion in rat hearts
(4). In the present study, H2O2-induced oxidative stress pro-

moted a protein-protein interaction between PPAR� and CypD
that was associated with PTP opening. Conversely, metformin
prevented this interaction, suggesting that PPAR� was in-
volved in regulating pore formation indirectly through interac-
tion with CypD. Interestingly, the effects of metformin were
not associated with acetylation or phosphorylation of PPAR�
and CypD, indicating that other types of post-translational
protein modifications might induce their interaction. In addi-
tion, post-translational modifications of CypD including acet-
ylation (36, 40) can also initiate its interaction with other
proteins and promote PTP formation (23). Previous studies
provided contradictory data on the post-translational modifica-
tions of PPAR�. Protein kinase A (32) and p38 (3) phosphor-
ylated PPAR�, leading to a ligand-dependent increase of
PPAR� activity in neonatal rat cardiomyocytes and HEK-293
cells. On the other hand, activation of ERK1/2 in cardiomyo-
cyte hypertrophy induced downregulation of PPAR� (2).

The beneficial effects of metformin on mitochondria in
cultured cardiomyocytes was associated with the attenuation of
ROS, an inducer of PTP opening, as well as reduction of
mtDNA damage. Notably, the inhibition of PTP opening might
be due to a direct effect of metformin on complex I of the ETC,
which, in turn, could block pore formation (34). Inhibition of
complex I by rotenone or metformin and displacement of
CypD by cyclosporin A have been proposed to affect the PTP
through a common mechanism (33). However, a direct inhib-
itory effect of 10 mM metformin on complex I was observed
only several hours after incubation with mitochondria because
of low uptake rate of the drug (34). In our studies, metformin
reduced the complex I activity in control cells but recovered it
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in response to oxidative stress (Fig. 3D). Although metformin
has been shown to exert various AMPK-independent effects on
cell signaling (25, 38), the cardioprotective effects of this
compound are apparently mediated through activation of
AMPK. H9c2 cells pretreated with compound C markedly
reduced beneficial effects of metformin and A-769662 on cell
survival (Fig. 1) and mitochondria (Fig. 3C). Our data are
consistent with previous studies that showed that pretreatment
of primary cardiomyocytes exposed to H2O2 with compound C
similarly inhibited the effects of both metformin and AICAR to
prevent apoptosis (39).

The AMPK-PGC-1� relationship was mostly investigated
with chronic activation of AMPK in various animal models
(17, 46). Metformin exerted beneficial effects on cardiac func-
tion and survival in postinfarction heart failure via AMPK

activation and increased PGC-1� expression associated with
improved mitochondrial respiration and ATP (19). Likewise,
chronic AMPK activation by metformin improved mitochon-
drial biogenesis by inducing PGC-1� expression (42) or direct
activation of PGC-1� by phosphorylation in skeletal muscle
(21). PGC-1� affects mitochondrial metabolism through
PPARs: PPAR�, PPAR�/
, and PPAR�. PPAR� is highly
expressed in the heart, where it upregulates genes involved in
transport, activation, and oxidation of fatty acids (15). To our
knowledge, there are no data on the effect of PPAR� on
mitochondrial metabolism in acute oxidative stress. The effects
of PPAR� on mitochondria may differ in acute stress since the
short duration of the stress is not sufficient to affect gene
expression. In addition to regulation of CypD, PPAR� can
improve mitochondrial function through upregulation of nitric
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oxide synthase activity (7). Metformin promoted phosphoryla-
tion of nitric oxide synthase through AMPK activation in
cultured cardiomyocytes (20, 39). Nitric oxide can improve
mitochondrial function by opening mitochondrial ATP-sensi-
tive K	 channels via the cGMP-protein kinase G pathway and
inhibiting complex I.

We observed a small, but statistically significant, increase in
mtDNA abundance in cells exposed to H2O2. This increase in
mtDNA abundance could represent a compensatory mecha-
nism in response to damaged mtDNA. Previous studies re-
vealed a PGC-1�-dependent increase of mtDNA abundance in
response to aging (12). A similar mechanism may exist in
response to the acute changes induced during H2O2 treatment.
However, at higher H2O2 doses, we observed no increase in
mtDNA abundance. This could be due to the deleterious effects
of high H2O2 concentrations to inactivate the above proposed
mechanism.

H2O2 treatment also induced extensive mtDNA damage in a
concentration-dependent manner, and metformin abolished this
effect (Fig. 8). Our DNA damage detection method does not
allow the identification of the specific mtDNA lesions induced
by the H2O2 treatment, but recent studies in H9c2 cells exposed
to oxidative stress revealed high levels of 8-hydroxy 2=-deox-
yguanine and apurinic/apyrimidinic sites in the mitochondrial
genome (44). Furthermore, this study underlines the impor-

tance of mtDNA repair since mitochondrial overexpression of
the base excision repair enzyme 8-oxoguanosine DNA glyco-
sylase-1 decreased mtDNA lesions and improved mitochon-
drial function. The protective effect of metformin suggests that
mtDNA damage is an important hallmark in the cascade of
events induced by the acute oxidative stress treatment, which
eventually culminates in cell death. Previous studies showed
that metformin can reduce oxidative stress and DNA damage
induced by paraquat in fibroblasts (1). Interestingly, it did not
protect against H2O2-induced DNA damage in these cells. The
discrepancy can be explained by differences in DNA damage
detection methods employed; our method is focused exclu-
sively on mtDNA damage versus the histone �H2AX phos-
phorylation method employed by the previous study, which
detects exclusively nuclear DNA damage.
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Overall, based on the present study, we propose the follow-
ing mechanism to explain the protective effects of metformin-
induced AMPK activation on mitochondria with acute oxida-
tive stress. Metformin prevents oxidative stress-induced inter-
actions between PPAR� and CypD, thus blocking formation of
the PTP. In addition to membrane potential, AMPK may
reduce ROS production by increasing expression of mitochon-
drial SOD, although this is unlikely in acute oxidative stress
(30). Further studies are required to clarify a cause-effect
relationship between PPAR�-CypD interaction and PTP open-
ing under acute oxidative stress by using hypoxia-reoxygen-
ation in primary cardiomyocytes and ischemia-reperfusion
in intact hearts. Also, a cause-effect relationship between
PPAR�-CypD interaction and PTP opening should be ad-
dressed in future studies. It should be noted that we employed
H9c2 cells which are undifferentiated myoblasts derived from
the embryonic rat heart. They do not contract and exhibit
several metabolic and functional properties of skeletal muscle.
Although we have recently shown that H9c2 cells are similar to
primary cardiomyocytes on energy metabolism features and
can be successfully used as an in vitro model to study oxidative
stress (31), some caution should be taken into consideration
during the interpretation of present results.
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