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a b s t r a c t

Lipid–protein complexes comprised of oleic acid (OA) non-covalently coupled to human/bovine
a-lactalbumin, named HAMLET/BAMLET, display cytotoxic properties against cancer cells.
However, there is still a substantial debate about the role of the protein in these complexes. To shed
light into this, we obtained three different BAMLET complexes using varying synthesis conditions.
Our data suggest that to form active BAMLET particles, OA has to reach critical micelle concentration
with an approximate diameter of 250 nm. Proteolysis experiments on BAMLET show that OA pro-
tects the protein and is probably located on the surface, consistent with a micelle-like structure.
Native or unfolded a-lactalbumin without OA lacked any tumoricidal activity. In contrast, OA alone
killed cancer cells with the same efficiency at equimolar concentrations as its formulation as
BAMLET. Our data show unequivocally that the cytotoxicity of the BAMLET complex is exclusively
due to OA and that OA alone, when formulated as a micelle, is as toxic as the BAMLET complex.
The contradictory literature results on the cytotoxicity of BAMLET might be explained by our finding
that it was imperative to sonicate the samples to obtain toxic OA.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Discovering effective cancer treatments is a priority in medical
research. Traditional treatment by chemotherapy often still utilizes
combinations of very cytotoxic drugs that primarily kill all
metabolically active cells [1]. Since some normal cells also divide
rapidly, most treatments involving chemotherapy have a low phar-
maceutical index and frequently produce severe side effects [1–3].
Taking this into consideration, there is a strong need to develop
more selective cancer drugs. For example, nano-sized delivery sys-
tems are being developed to promote drug accumulation at the

tumor site by the enhanced permeability and retention (EPR) effect
[4,5].

Targeted delivery systems are also being developed that exploit
other hallmarks of cancer. Such hallmarks include differences in
the cell membrane composition including the fatty acid (FA) com-
position [6]. Some FA have key roles in regulating cell processes [7]
and thus have potential in bio-therapeutic and pharmaceutical
applications. Specifically, over the last three decades, different
studies have characterized the pharmacological and biological
[8,9] role of FA and their application in cancer treatments
[10,11]. Unsaturated FA are internalized by receptor-mediated
mechanisms or by diffusion across the cell membranes [12] and
have been shown to influence inflammation, apoptosis, and growth
inhibition processes [13–15]. The mechanism of FA that causes cell
death involves apoptosis and necrosis [16]. Unsaturated FA also
promote the modification of immune responses, changes in mem-
brane composition, and cell fluidity [17,18]. The x-3 and x-6 FA
have been the most studied antineoplastic agents [14,19] and only
few studies also explored x-9 monounsaturated FA. A few years
ago, Martins de Lima and Curi-Boaventura demonstrated that
x-9 monounsaturated FA could bind to peroxisome-proliferator-ac
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tivated receptors to produce lipid peroxidation and reactive oxy-
gen species [20,21].

OA is a x-9 monounsaturated FA that was discovered in the
1990ths by Svanborg and co-workers to be associated with human
a-lactalbumin (LA) in breast milk to form a complex they called

HAMLET (Human Alpha lactalbumin Made LEthal to Tumor cells)
because it was characterized by potent cytotoxic activity [22].
Subsequent papers also reported that this complex was selectively
cytotoxic to malignant cells but spared healthy ones [23–25].
Follow-up studies of HAMLET revealed that the OA moieties are
bound to a denatured form of a-LA [26,27]. Svanborg and
co-workers also conducted experiments to form HAMLET-like com-
plexes using cis- and trans-mono- and polyunsaturated FA with the
purpose of determining if other FA could produce similar cytotoxic
complexes [28]. Their results showed that the two
cis-monounsaturated FA, OA (C18:1:9 cis) and vaccenic acid
(C18:1:11 cis), killed cancer cells when coupled to a-LA while
trans- and polyunsaturated FA were unable to do so. The study also
claimed that OA in the absence of a-LA is not tumoricidal.
Highlighting the importance of the protein in the tumor toxicity,
another study concluded that the denaturation of the protein is
thekey to thenovel anti-tumoral effect of theHAMLETcomplex [29].

However, recently published papers report contradictory
results on the toxicity of a-LA and OA in HAMLET-like complexes.
In essence, several works interpret their data to show that none of
the individual HAMLET components (a-LA and OA) alone were able
to activate cell death [30]. In contrast, other articles pointed out
that OA is the key for the potent cytotoxicity and cell internaliza-
tion [31–34]. Other research groups still attribute the cytotoxicity
to the partially unfolded structure of a-LA [35,36], yet other stud-
ies associate the tumoricidal action to the lipid factor but highlight
that OA is not as toxic at the same concentration than OA in
HAMLET-like complexes [33] or even claim that free OA is basically
inactive at the concentration at which HAMLET causes cell death
[36]. We can surmise that even today there is a vivid ongoing dis-
cussion as to the contributions of OA and a-LA to the cytotoxicity
of HAMLET and HAMLET-like complexes.

Another point recently raised in the literature is with respect to
the specificity of the HAMLET-like complexes to only target
cancer cells. Some recent studies continue suggesting that
HAMLET-like complexes are selectively cytotoxic by activating
caspase-independent apoptosis, necrosis, and macroautophagy in
cancer cells [25,27,36]. However, Brinkmann and co-workers
showed that non-cancer derived primary cells were indiscrimi-
nately killed after exposure to BAMLET and that some normal cells
could even be more sensitive to it than cancer cells [31].

Taking into consideration the extensive level of controversial
data and knowledge gap concerning the structure–function rela-
tionship of HAMLET/BAMLET, we optimized three different reac-
tion conditions to construct various BAMLET complexes using
bovine a-LA and OA (Fig. 1). The structure, size, morphology, and
cytotoxicity of these BAMLET complexes were scrutinized and
compared to activity profiles of preparations of the free OA.

2. Results and discussion

2.1. Synthesis and characterization of BAMLET complexes

In order to be able to compare various BAMLET complexes, we
adapted several methods from the literature [37–39] and opti-
mized them to improve the coupling reaction of OA to a-LA
(Fig. 1). The main differences in the reaction conditions were the
temperatures (45 �C, 60 �C, and 85 �C) and pH values (2, 8, and
12) employed. According to the literature increased temperature
should lead to better loading with OA because more denatured

a-LA molecules expose more of the hydrophobic core where most
FA binding is anticipated [40]. Similarly, the pH should also influ-
ence the protein conformation, which is important since the cou-
pling of OA to a-LA is largely based on the hydrophobic effect
[41]. At the end of the syntheses, all the complexes were submitted
to 1-step of ultra-sonication for 1 min at 400W and then lyophi-
lized. The three complexes were named a-LA-OA HCl 85, NaOH
45, and Tris–HCl 60 based on the synthesis conditions employed
(Table 1).

After performing the BAMLET syntheses, the coupling of OA to
a-LA was confirmed by fluorescence emission spectroscopy (for
details see Supplementary Data). We precisely determined the
amount of OA bound to a-LA (mol/mol) in each of the synthesized
BAMLET complexes by a colorimetric assay. The results confirmed
the presence of OA in each BAMLET complex and also show that
the amount of OA depended on the details of the coupling reaction
(Table 1). In general, neutral and high pH values resulted in better
loading of OA to a-LA.

The size of drug formulation is extremely important for delivery
purposes to tumors because of the so-called EPR effect [42].
Particles with a diameter of about 50–500 nm accumulate in
tumors because the blood vessels have relatively large gaps due
to the leaky vasculature. Previous studies did not evaluate the size
and shape of HAMLET or BAMLET complexes. We characterized
both, the size and shape of the BAMLET complexes formed using
the three different methods by dynamic light scattering (DLS)
and scanning electron microscopy (SEM). All complexes, indepen-
dent of the method used, produced spherical NP of around
250 nm in diameter (Table 1 and Fig. 2A). We assume that these
NP resemble micelles, because lipids have the feasibility of incor-
porate hydrophobic or hydrophilic drugs when reaching the critical
micellar concentration [43].

To get an idea about the possible self-assembly of OA surround-
ing the protein, we performed computational modeling studies of
the interaction of OA with a-LA. Using the YASARAmolecular mod-
eling suite, we docked 6 molecules of OA (4DQ3) to the apo bovine
a-LA (1F6R). a-LA is a 14 kD (123 aa) protein stabilized by a Ca+2

binding loop at the interface between the a- and b-domains. The
large a-domain is composed of three a-helices and the small
b-domain of three antiparallel b-pleated sheets [28,44]. The results
from the simulation demonstrate OA binding sites on the surface of
a-LA. The OA molecules bound here by hydrophobic interactions
point the polar head to the aqueous environment (Fig. 2B). In addi-
tion, we found that OA molecules are interacting mostly with the
helical lobe and near to the Ca+2 binding site, at the interface of
the two lobes, as proposed by others [45,46]. Furthermore, some
solvent-exposed polar and charged residues on the a-LA surface
(Lys 5, 13, 93, 114, and His 32) expectedly interact with the nega-
tively charged COO� of OA. In contrast, somewhat counterintuitive,
the polar residues Gln 2, 117 and Thr 4, 86 interact with the
non-polar hydrocarbon chain of the OA. One has to keep in mind
that additional OA binding could involve the hydrophobic core area
of a-LA after partial denaturation.

In vivo studies of nano-sized micellar formulations have
demonstrated protection of the drug against proteolytic degrada-
tion [47]. If our idea on a micelle-like arrangement of the lipids
on the protein surface were to be correct, there should be protec-
tion of a-LA against proteolysis afforded by the lipid. We employed
the protease trypsin in this assay because it cuts the peptide back-
bone next to Lys residues, which are involved in OA binding
according to our molecular modeling results (Fig. 2). The BAMLET
complexes and a-LA as control were incubated with trypsin for
up to 72 h and the fluorescence emission intensity at 305–
440 nm monitored to assess the protein conformation during the
digest (Fig. 3) [48]. The fluorescence intensity should decrease
because Trp residues become more solvent exposed thus enabling
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internal conversion pathways to relax from the excited state [49].
As expected, a-LA lost fluorescence emission intensity upon expo-
sure to the proteolytic digest (Fig. 3). In contrast, OA improved the
stability of a-LA toward proteolytic degradation in the BAMLET
complex as predicted by our model. The decrease in the fluores-
cence was the least pronounced in a-LA-OA Tris–HCl 60 which
had the most OA molecules bound (Table 1). The slightest protec-
tion was afforded by a-LA-OA HCl 85 with the least bound mole-
cules of OA (Table 1).

In summary, the experiment confirms the results obtained from
the theoretical simulation of the BAMLET complex in which OA
affords proteolytic protection by shielding the protein surface.

2.2. Identification of the cytotoxic component in the BAMLET
complexes

After the characterization of the synthesized complexes, we
performed MTS viability assays of HeLa cells after treatment with
BAMLET complexes. We found that all three synthesized com-
plexes showed similar toxicities (see Supplementary Data). In the
following, we aimed at identifying the cytotoxic component in
the BAMLET complexes by using the individual components,
namely the free OA and a-LA alone. We speculated that there must
discrepancies in how previous studies employed OA because in
many instances the isolated FA was reported not to induce cell
death [22–29]. A recent study elucidated the importance of some
of the experimental conditions when working with isolated FA
[31]. For example, it was found that the use of glass vials instead
of plastic vials is imperative for FA or FA-protein complex prepara-
tion to avoid adhesion problems. We suspected the dispersion
method to be of major importance when working with FA and
we tested the importance of good dispersion of the FA in cytotox-
icity assays. We used OA without intense dispersion and after
intense dispersion using sonication for two minutes at 30 �C
(Branson 3510R-MT, 42 kHz, 130 W). We selected a standard
MTS-based cell viability assay after incubating them with these
preparations of OA (Fig. 4A). Our results confirm the importance
of the dispersion method. Cell viability was still ca. 50% for the
sample used without sonication while it dropped to only few per-
cent when sonication was used to disperse the FA. The use of etha-
nol to improve OA solubility in the medium did not cause an
increase in cell death in comparison with the samples without

Fig. 1. Schematic representation of the syntheses conditions for the coupling of OA moieties to bovine a-LA to obtain BAMLET used in this work. For details on the properties
of the complexes prepared by the three methods please see Table 1.

Table 1
Characterization of the synthesized BAMLET complexes.

Sample OA/a-LAa

(mol/mol)
Diameter
(nm)b

%
Polydispersityc

a-LA-OA Tris–HCl
60

11 ± 3 227 ± 14 13.2

a-LA-OA NaOH 45 9 ± 2 256 ± 17 33.9
a-LA-OA HCl 85 4 ± 1 292 ± 11 28.7
OAd n/a 198 ± 9 10.9

a Number of OA molecules attached to each a-LA on average determined.
b Obtained by dynamic light scattering (DLS). BAMLET complexes were sus-

pended in filtered nanopure water.
c Polydispersity is a measure of the homogeneity of the NP.
d Free OA dispersed in filtered nanopure water by sonication. The values are the

mean and the error values are the calculated S.D.

Fig. 2. (A) SEM images of the three BAMLET complexes synthesized. In agreement with DLS measurements (Table 1) the images display spherical micellar NP. (B) Modeling of
OA binding to a-LA in the BAMLET complex. The blue colored residues were found to be responsible for OA interactions with the a-LA surface.
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Fig. 3. Fluorescence emission spectra (kexc = 295 nm) of the BAMLET complexes [0.5 mg/ml] after incubation with 3 mg of trypsin for 72 h.

Fig. 4. HeLa cell viability after 6 h of incubation with free OA and a-LA. (A) MTS of differently prepared OA samples. OA labeled with the * were prepared using sonication
prior to cell incubation. (B) MTS of differently prepared a-LA samples (C). Cellular uptake of a-LA-FoA. OA (120 lM) and a-LA (117 mM) were adjusted to the same
concentration of the synthetized BAMLET. The values are the mean and the error values are the calculated S.D.
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the ethanol. This observation indicates that likely micelles formed
by OA are the cytotoxic compound, not individual OA molecules.

Next, we verified whether a-LA or its denatured states had any
active role in the cytotoxicity. Native a-LA was employed as con-
trol and compared to its heat-treated form obtained at 60 �C.
Both formulations did not show any cytotoxicity (Fig. 4B). One
could argue that this was due to the fact that a-LA is a membrane
impermeable protein. Binding of OA, in theory, could cause the
protein to be transported into the cell and then subsequently cause
cytotoxicity. We therefore tested if the internalization of a-LA into
the cell per se could cause cell death.

We modified a-LA with folic acid (FoA) since HeLa cells overex-
press the FoA receptor [50] using EDC/NHS crosslinking chemistry
[51]. The internalization of a-LA-FoA was confirmed by confocal
microscopy using FITC to label a-LA (Fig. 4C) (for more details,
see Supplementary Data). Again, no cytotoxicity was observed
(Fig. 4B). In conclusion, none of our data support the notion that
the structure of a-LA is particularly important for the cytotoxicity.
Regardless of its structure per se it does not have any intrinsic cyto-
toxic activity.

Having established that OA alone displays cytotoxicity when
treated by sonication, next we compared the cytotoxicity of OA
versus OA in BAMLET complex after sonication (Fig. 5). We selected
the 120 lM BAMLET (a-LA-OA Tris–HCl 60) complex because it has
the most OA bound of the complexes prepared (Table 1), and in
addition was the most stable complex in the trypsin environment
(Fig. 3). Our results show similar lethal concentrations (LC) upon
HeLa cell incubation with OA alone at comparable concentrations
to OA bound in the BAMLET complex (Fig. 5A). Thus, OA cytotoxi-
city is not modified or enhanced by binding to the protein – if any-
thing the OA micelles are slightly more cytotoxic when presented
to the cells as demonstrated by DAPI & PI confocal analysis
(Fig. 5B). OA micelles-treated cells showed a PI signal increment
in the cells indicative of late apoptosis compared to
BAMLET-treated cells showing early apoptosis (Fig. 5B).

2.3. BAMLET cytotoxicity in cancer and normal cell lines

It has been claimed in numerous studies that HAMLET/BAMLET
complexes specifically only kill cancer cells while leaving regular
cells unharmed [22–29]. However, this notion has been challenged
in recent reports in which it is stated that HAMLET/BAMLET com-
plexes are not selectively cytotoxic to cancer cells [31,52]. Looking
into this controversy, we decided to test the cytotoxicity of the
BAMLET (a-LA-OA Tris–HCl 60) complex on normal (Cho-K1 and
NIH/3T3) and cancer (HeLa and A-549) cell lines (Fig. 6). The
results demonstrate that there was no selectivity afforded by asso-
ciating OA with the protein towards cancer cells. The cytotoxicity
of 120 lM of OA alone or in the BAMLET complex was quite similar
in the different cell lines even though the cell lines showed some
differences in sensitivity towards OA and BAMLET. It is interesting,
however, that normal cells seem less sensitive towards OA and
BAMLET than cancer cells. This indicates that it perhaps is possible
to use OA and BAMLET as medication in cancer applications after
optimizing the conditions further.

In summary, through this study, we found that OA is the cyto-
toxic component of the BAMLET/HAMLET complexes. Native or
unfolded a-LA lacked any tumoricidal activity, even when deliv-
ered to the cytoplasm of the HeLa cancer cells. The data highlight
that a-LA just serves as the carrier of OA molecules and no syner-
gistic activity of FA and a-LA was detected because the free FA
alone was as effective as the FA bound to BAMLET. Furthermore,
BAMLET and OA micelles both also killed normal cells, incompati-
ble with the notion of BAMLET acting solely on cancer cells.
However, the cancer cell lines employed herein were more sensi-
tive towards the drugs than the normal cell lines. While this might
be a hint for a potential therapeutic window in the use of BAMLET
or OA micelles in cancer treatment, many more studies are needed
to explore possibilities to improve the potential drugs by attaching
targeting ligands or by using other proteins as carriers. For
instance, there are studies ongoing in our laboratory investigating
the coupling of OA to therapeutically-active proteins to increase
the efficacy of these complexes by exploiting synergies.

3. Experimental procedures

3.1. Materials

Calcium depleted Type III a-lactalbumin from bovine milk
(a-LA), a fatty acid quantitation kit (MAK044), trypsin from porcine

Fig. 5. LC50 determination of BAMLET (a-LA-OA Tris–HCl 60) and OA after 6 h of
incubation. (A) HeLa cell viability assay at different concentrations (40, 80, 100 lM)
of a-LA-OA Tris–HCl 60 and OA. The values are the mean and the error values are
the calculated S.D. (B) Confocal microscopy of HeLa cells treated with 80 lM of
a-LA-OA Tris–HCl 60 and with 80 lM of OA alone. All the samples were prepared by
sonication in MEM for 2 min at an energy setting of 130 W.

Fig. 6. Non-selective cytotoxicity of BAMLET (a-LA-OA Tris–HCl 60) and OA
towards normal cells (Cho-K1 and NIH/3T3) and cancer cells (HeLa and A-549)
after 6 h of incubation. The values are the mean of quadruplicate measurements
and the error values are the calculated S.D.
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pancreas, oleic acid (OA, >99% purity), were purchased from Sigma
Aldrich (St. Louis, MO). The centrifugal filtration system (Millipore
Amicon cut off 3–5 kD,) was purchased from Thermo Fisher
Scientific (Hudson, New Hampshire). HeLa and NIH/3T3 cells,
serum, and culture media were purchased from the American
Type Culture Collection (Manassas, VA). A-549 and Cho-K1 cells
were cordially donated from Dr. Gabriel Barletta’s lab at
University of Puerto Rico-Humacao. All other chemicals were of
analytical grade and from various commercial suppliers and used
without further purification. All samples were analyzed in
quadruplicate.

3.2. BAMLET complexes synthesis

The three different procedures were adapted from the literature
and used to synthetize the BAMLET complex:

Method 1 (Tris–HCl 60) [37,53]. Briefly, a-LA was dissolved in
20 mM Tris–HCl at pH 8 to a final concentration of 600 lM and
the solution heated to 60 �C. Then, 40 mol of OA was added to
the solution followed by 2 min of sonication at 30 �C (Branson
3510R-MT, 42 kHz, 130 W). The reaction mixture was stirred at
60 �C for 30 min, cooled under tap water, acidified to pH 3.5, and
stirred for 24 h at 4 �C. The complex is referred to as a-LA-OA
Tris–HCl 60.

Method 2 (HCl 85) [39,54]. Briefly, a-LA was dissolved in 1 M HCl
and by stirring for 24 h at room temperature to a final concentra-
tion of 600 lM. Next, the solution was heated to 85� and then
40 mol of OA previously dissolved in 1 ml of ethanol was added
to the solution followed by 2 min of sonication at 30 �C (Branson
3510R-MT, 42 kHz, 130W). The reaction was completed by con-
stant stirring for 30 min at 85 �C and cooling under tap water
and stirred for 24 h at 4 �C. The complex is referred to as
a-LA-OA HCl 85.

Method 3 (NaOH 45) [38]. a-LA was dissolved in 5 mM NaOH
and 1 mM EDTA at pH 12 to a final concentration of 600 lM. The
solution was heated to 45 �C and then 40 mol of OA dissolved in
1 ml of ethanol was added followed by sonication for 2 min at
30 �C (Branson 3510R-MT, 42 kHz, 130W). After stirring for
30 min at 45 �C the reaction was cooled under tap water to room
temperature, acidified with HCl to pH 3.5, and stirred for 24 h at
4 �C. The complex is referred to as a-LA-OA NaOH 45.

All the reactions following Methods 1–3 were neutralized to pH
7 and finally ultra-sonicated (Branson Ultrasonics 450) for 1 min at
400 W. Unbound OAwas removed by a centrifugal purification sys-
tem against 50% ethanol/50% nanopure water (HERMLET Labnet Z
323 k, 8000 rpm), and against nanopure water, and then lyophi-
lized (LABCONCO FREEZONE 6 freeze dry system) for 48 h.
Finally, all the synthetized complexes were stored at �20 �C in
glass-amber vials.

3.3. FA quantification

We employed a commercially available kit from Sigma Aldrich
according to the manufacturer instructions and as previously
described [31]. The samples were diluted in 50 lL of assay buffer
and analyzed in a 96-well plate. Palmitic acid was used as stan-
dard. 2 lL Acyl-CoA synthetase was added to each well to convert
FAs to their CoA derivatives. The CoA-FA were subsequently oxi-
dized with the concomitant generation of color. The reaction out-
come was quantified by measuring the absorbance at 570 nm
using a microplate reader (Thermo Scientific Multiskan FC).

3.4. Dynamic light scattering (DLS)

Particle sizes of the BAMLET complexes were determined by
DLS using a DynaPro Titan by dispersing 0.5 mg in 2 ml of water

and subject this suspension to ultra-sonication (Branson
Ultrasonics 450) for 3 min at 400 W. The instrument was calibrated
using 46 ± 2 nm (Cat. No. 3300A) and 300 ± 6 nm (Cat. No 3050A)
nanospheres™ size standards (Thermo Fisher Scientific; Hudson,
New Hampshire).

3.5. Scanning electron microscopy (SEM)

SEM of BAMLET complexes and FAs micelles was performed
using a JEOL 5800LV scanning electron microscope at 20 kV by dis-
persing 0.5 mg of the complexes in 500 lL of water followed by
ultra-sonication at 400 W for 3 min. Then, some small drops of
each suspension were put on a carbon tape and air-dried. After
24 h the samples were coated with gold for 10 s using a Denton
Vacuum DV-502A.

3.6. Proteolytic degradation assay

Proteolytic degradation was performed as described by us
[51,55]. In this case intrinsic fluorescence was used to measure
structural changes as stated by others [28,48]. In brief, for tryptic
degradation, 0.5 mg/ml of a-LA and BAMLET complexes were pre-
pared in 20 mM Tris–HCl at pH 8 with 2% (v/v) of ethanol and incu-
bated for 20 min at 20 �C. Then, 4 mg of trypsin was added to 1 ml
of each solution and incubated at 37 �C. The degradation of a-LA
was determined by fluorescence measurements after 0 h, 24 h,
48 h, and 72 h of incubation. Fluorescence emission spectra
(kem = 305–440 nm) were obtained using kexc = 295 nm excitation
with a fluorimeter (Varian CARY Eclipse fluorescence spectropho-
tometer) using a quartz cuvette with 1-cm path length.

3.7. Theoretical molecular docking analysis

YASARA software was used to perform all the calculations. The
BAMLET complex model was created using the apo bovine a-LA
(1F6R) and 6 molecules of OA (4DQ3) from RCSB Protein Data
Bank. The system was pre-equilibrated by the steepest descent
minimization using AMBER03 force field at 25 �C with a cutoff of
7.86431 Å. The BAMLET model was solvated in a cubic box with
the size of 20 Å and filled with explicit water molecules
(0.997 g/ml of density and 1.4 Å of radius). Periodic boundary con-
ditions were applied in all directions and the system was neutral-
ized by adding counter ions replacing the water molecules. The
energy-minimized system was subjected to 50 ps of equilibration.
The docking calculations were carried out using AutoDock 4.2 to
compute the free energy of binding (Docking runs = 50; Cluster
RMSD = 5.00 Å) [56,57]. Five different docking jobs were run using
initial positions, orientation and torsions of the ligand moieties
randomly set. The final structure with all the ligand moieties
bound to the potential binding sites was further refined by simu-
lated annealing minimization using the following conditions:
AMBER03, 60 �C, cutoff of 7.86431 Å, same solvated cubic box
dimension and conditions.

3.8. Cell culture

HeLa cells were maintained in accordance with the ATCC proto-
col. Briefly, HeLa, A-549, Chok-1, and NIH/3T3 cells were cultured in
75 cm2 flasks with minimum essential medium (MEM), Ham’s F-12
Nutrient Mixture, F-12K (Kaighn’s Modification of Ham’s F-12) and
Dulbecco’s Modified Eagle Medium (DMEM), respectively and con-
taining 1% L-glutamine, 10% fetal bovine serum (FBS), and 1% peni-
cillin in a humidified incubator with 5% CO2 and 95% air at 37 �C.
All experiments were conducted before cells reached 20 passages.
In each passage, cells were washed twice with PBS, detached using
trypsin, and suspended in supplemented medium.
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3.9. Cell viability assay

Mitochondrial function was measured using the CellTiter 96
aqueous non-radioactive cell proliferation assay. All cell lines
(5000 cells/well) were seeded in 96-well plates for 24 h. Cells
were incubated with 100 lL of a-LA, OA, and BAMLET complexes
for 6 h. The concentration of the BAMLET complexes added to
each well was calculated based on the OA concentration deter-
mined in the complex. In other words, cell viability experiments
were performed at the same OA concentration (120 lM) to allow
for comparison with the free OA. Controls of the native and
denatured a-LA alone were adjusted to the same concentration
as the respective protein concentration (117 mM) in each
complex.

All the samples were freshly prepared prior to the experiments.
BAMLET complexes and OA were dispersed in the medium by
2 min of sonication (Branson 3510R-MT, 42 kHz, 130 W) prior to
co-incubation with the cells except for the experiment with differ-
ent preparations of OA. Next, 20 lL of 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt (MTS), and phenazine methosulfate (PMS) was added to
each well (333 lg/ml MTS and 25 lM PMS). After 1 h, the absor-
bance at 492 nm was measured using the microplate reader.
Cells treated with 2 lM staurosporine for 6 h were used as positive
control and cells without treatment were used as negative control.
The relative cell viability (%) was calculated by:

Relative cell viability ð%Þ ¼ Abs test sample
Abs control

� 100

3.10. Apoptosis assay using confocal microscopy

HeLa cells (25,000 cells) were seeded and incubated in Lab-tek
chambered coverglass (4-wells) as described above. The cells were
incubated with 100 mM a-LA, and 80 lM of OA and BAMLET com-
plexes at 37 �C for 6 h. For detection of apoptosis-dependent
nuclear fragmentation, the cells were washed with PBS (1�) and
incubated initially with DAPI (300 nM) and thereafter with PI
(75 lM) for 5 min each. HeLa cells were then fixed using 3.7%
formaldehyde. The coverslips were examined under a Zeiss
laser-scanning microscope 510 using a 67� objective.
Co-localization of DAPI and PI upon internalization into HeLa cells
was determined, which is representative of highly condensed and
fragmented chromatin in apoptotic cells. DAPI was excited at
405 nm and its emission detected at 420–480 nm. PI was excited
at 488 nm and its emission detected above 505 nm.
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